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Part 0: Overview



Definitions and notation

(X, u) is a standard probability space. O wi N

T is a Borel transformation on X. |rrafignod rotocon lo(a o

I is a countable (semi)group acting on X in a Borel way.
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Classical pointwise ergodic theorem for a transformation

Theorem (Classical pointwise ergodic theorem, Birkhoff 1931)

A pmp transformation T : X — X is ergodic if and only if for each
fe Ll(X,,u) and for a.e. x € X,

n||_>rrgo (average of f over {x, Tx, ..., T”*lx}> = /X fdu.
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Amenable groups

» In the classical pointwise ergodic theorem for pmp actions Z ~ (X, p),
the averages are taken over {0,1,...,n} - x.
T x Tx Tx Ty Th% T T%

sequente ¢f
pafw\c e Quveraces of &

K
== over ¥, - X J)QO\,M

» The sequence F, :={0,1,...,n} C Z works because it is a Fglner
sequence (the sets have small boundary relative to their size).
. prp ook
» This holds more generally for amenable groups: of

o Lindenstraus (2001). The pointwise ergodic theorem holds for all N
amenable groups along tempered Fglner sequences.



Nonamenable groups

» Take, for example, the free group I, on r > 2 generators.

P Its finite subsets have large boundary, for example, the balls By:

» We make the boundary small by assigning weights, so each sphere S,
receives total weight 1.

P In other words, we take a non-backtracking simple random walk on F,.

Let m, denote the uniform
distribution on each sphere §,,.




A pointwise ergodic theorem for free groups...

along balls with uniform weights

Theorem (Grigorchuk 1987; Nevo 1994)

Let m, be the measure on F,, r < oo, that is the uniform probability
distribution on each sphere (non-backtracking simple random walk).

A pmp action IF, m (X, i) is ergodic iff for any f € LY(X, ), for a.e.

XGX'(r Z—- g(‘()‘\'mu(Y\

N4\
u-weighted average off over B, - x — / fduasn— oo,

where B,, is the (closed) ball of radius n of the Cayley graph of F,.




A pointwise ergodic theorem for free groups...

along balls with Markov weights
Theorem (Bufetov 2000)

Let m be a strictly irreducible stationary Markov measure on S<N, where S
is the standard symmetric generating set of F,, r < oo.

A pmp action B, ~ (X, i) is ergodic iff for any f € L}(X, ), for a.e.
x € X,

m-weighted average of f over B, - x — / fdu as n— oo,
X

where B, is the (closed) ball of radius n of the Cayley graph of F,.




Part 1: pointwise ergodic theorem
for the boundary action of the free
groups



The boundary action F, ~ JF,

» [F,.: the free group on r generators, r < co
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» OF,: the space of infinite, reduced words in the generators of I,
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Pointwise ergodic theorem for the boundary action

Corollary (Tserunyan—Z. 2020+)

If the boundary action is ergodic, then for each fell (X ) and for a.e.
x € OF,, BX°

) f
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Part 2: backward pointwise ergodic
theorem for a transformation



The shift map on JFF,
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Backward pointwise ergodic theorem for T

Corollary (Tserunyan—Z. 2020+)

A countable-to-one pmp transformation T : X — X is ergodic if and only if
for each f € L1(X, 1) and for a.e. x € X,

weighted average of f over U T’(x)) = / fdu,
X

i<n

lim
n—oo

where the (relative) weights 1o, (y) come from the Radon—Nikodym cocycle.
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More general backward pointwise ergodic theorem for T

Theorem (Tserunyan—Z. 2020+)

A countable-to-one pmp transformation T : X — X is ergodic if and only if
for each f € LY(X, 1) and for a.e. x € X,

(ro.-weighted average of f over S;) — / fdu as ,(S¢) — oo,
X

here S, ranges over subtrees of the graph of T of finite height rooted at x
and directed towards x.
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A pointwise ergodic theorem for free groups...

along balls with Markov weights
Theorem (Bufetov 2000)

Let m be a strictly irreducible stationary Markov measure on S<N, where S
is the standard symmetric generating set of F,, r < oo.

A pmp action B, ~ (X, i) is ergodic iff for any f € L}(X, ), for a.e.
x € X,

m-weighted average of f over B, - x — / fdu as n— oo,
X

where B, is the (closed) ball of radius n of the Cayley graph of F,.




A pointwise ergodic theorem for free groups...

along trees with Markov weights

Theorem (Tserunyan—Z. 2020+)

Let m be a stationary Markov measure on F,, r < oo, such that the
measure of each w € F, is positive.

A pmp action B, ~ (X, i) is ergodic iff for any f € L}(X, ), for a.e.
x € X,

m-weighted average of f over S - x — / fdu as m(S) — oo,
X

where S ranges over finite subtrees of the Cayley graph of IF, rooted at the
identity.
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From the free group action to a transformation
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Part 3: forward pointwise ergodic
theorem for a semigroup action



Generalizing the backward theorem

(rox-weighted average of f over S;) — [ fdu as w,(S5¢) — oo,
. X
Borel Poriel) ~ionk taverss of T
» Backward theorem: for a single transformation T, where S, ranges over
subtrees of the graph of T of finite height rooted at x and directed
towards_x‘ 7,
[P
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» More generally: for an action of a countable sem|group I, where Sy

ranges over subtrees of the graph of I of finite height rooted at x and
directed away from x.
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Forward pointwise ergodic theorem

Theorem (Tserunyan—Z. 2022+)

If T and 1w are as below, and Er is ergodic, then for each f € Ll(X,,u) and
for a.e. x € X,

(o -weighted average of f over S;) — / fdu as w,(S¢) — oo,
X

where S, ranges over subtrees of the graph of T of finite height rooted at x
and directed away from x.
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Forward pointwise ergodic theorem

Theorem (Tserunyan—Z. 2022+)

If T and 1w are as below, and Er is ergodic, then for each f € Ll(X,,u) and
for a.e. x € X,

(o, -weighted average of f over S;) — / fdu as w,(S¢) — oo,
X

where S, ranges over subtrees of the graph of T of finite height rooted at x
and directed away from x.

v

Let (w, x) — wx(wx) be the relative weights map induced b

N
o (x) = ddliLZ; (7%)- == %X

Let ' = {v;: i < N < w} be a countable set of Borel partia
transformations ; : X — X. Assume that

o foreachne N, X =[], crnw- X,

o for p-a.e. x € X, 3 crtox(yx) = 1, and

@ the equivalence relation Er is null preserving.




Pointwise ergodic theorem for a free semigroup action

Theorem (Tserunyan—Z. 2022+)

Let A = (') be a free semigroup, where I = {~; : i < N < oo}, and let

A ~ X be a (not necessarily free) pmp ergodic semigroup action. Let m be
a stationary Markov measure on <N with positive transition matrix such
that the concatenation action A ~ TN s weakly mixing. Then for any

fe Ll(X,,u), for u-a.e. x € X, we have

m-weighted average of f over S - x — / f du as m(S) — oo,
X

where S ranges over finite subtrees of the Cayley graph of A rooted at the
identity.




Thank you!



