POINTWISE ERGODIC THEOREMS FOR SEMIGROUP ACTIONS OR: A SEQUENCE OF INCREASINGLY MORE ABSTRACT/ HARDER TO STATE RESULTS

Jenna Zomback

University of Illinois at Urbana-Champaign

joint work with Anush Tserunyan

Part 0: Overview

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

Definitions and notation

Classical pointwise ergodic theorem for a transformation

Theorem (Classical pointwise ergodic theorem, Birkhoff 1931)

A pmp transformation $T : X \to X$ is ergodic if and only if for each $f \in L^1(X, \mu)$ and for a.e. $x \in X$,

$$\lim_{n\to\infty} \left(\text{average of } f \text{ over } \left\{ x, Tx, ..., T^{n-1}x \right\} \right) = \int_X f \, d\mu.$$

Amenable groups

In the classical pointwise ergodic theorem for pmp actions Z ∩ (X, µ), the averages are taken over {0, 1, ..., n} · x.

- The sequence F_n := {0,1,...,n} ⊆ Z works because it is a Følner sequence (the sets have small boundary relative to their size).
- This holds more generally for amenable groups:
 - Lindenstraus (2001). The pointwise ergodic theorem holds for all Λ amenable groups along tempered Følner sequences.

Nonamenable groups

- ▶ Take, for example, the free group \mathbb{F}_r on $r \ge 2$ generators.
- ▶ Its finite subsets have large boundary, for example, the balls B_n:

- ► We make the boundary small by assigning weights, so each sphere S_n receives total weight 1.
- In other words, we take a non-backtracking simple random walk on \mathbb{F}_r .

Let \mathfrak{m}_u denote the **uniform** distribution on each sphere S_n .

(日) (部) (王) (王)

590

A pointwise ergodic theorem for free groups...

along balls with uniform weights

Theorem (Grigorchuk 1987; Nevo 1994)

Let \mathfrak{m}_u be the measure on \mathbb{F}_r , $r < \infty$, that is the uniform probability distribution on each sphere (non-backtracking simple random walk).

A pmp action
$$\mathbb{F}_r \curvearrowright (X, \mu)$$
 is ergodic iff for any $f \in L^1(X, \mu)$, for a.e.
 $x \in X$, $\frac{1}{n+1} \sum_{\substack{Y \in B_n \\ m_u-weighted average}} f(Y \times M_u(Y))$
 $m_u - weighted average of f over $B_n \cdot x \to \int_X f \ d\mu \ as \ n \to \infty$,$

where B_n is the (closed) ball of radius n of the Cayley graph of \mathbb{F}_r .

< □ > < @ > < 注 > < 注 > ... 注

A pointwise ergodic theorem for free groups...

along balls with Markov weights

Theorem (Bufetov 2000)

Let \mathfrak{m} be a strictly irreducible stationary Markov measure on $S^{<\mathbb{N}}$, where S is the standard symmetric generating set of \mathbb{F}_r , $r < \infty$.

A pmp action $\mathbb{F}_r \curvearrowright (X, \mu)$ is ergodic iff for any $f \in L^1(X, \mu)$, for a.e. $x \in X$,

$$\mathfrak{m}$$
-weighted average of f over $B_n \cdot \mathsf{x} \to \int_X f \ d\mu$ as $n \to \infty$,

where B_n is the (closed) ball of radius n of the Cayley graph of \mathbb{F}_r .

▲□▶ ▲舂▶ ▲差▶ ▲差▶ … 差

Part 1: pointwise ergodic theorem for the boundary action of the free groups

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

The boundary action $\mathbb{F}_r \curvearrowright \partial \mathbb{F}_r$

▶ \mathbb{F}_r : the free group on *r* generators, $r \leq \infty$

Pointwise ergodic theorem for the boundary action

Part 2: backward pointwise ergodic theorem for a transformation

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

The shift map on $\partial \mathbb{F}_r$

$$T: \Im F_{r} \longrightarrow \Im F_{r}$$

$$(X_{n}) \longmapsto (X_{n+1})$$

$$(forget first coordinate)$$

$$T^{-1}(x) = \{ax, bx, b^{-1}x\}$$

$$a^{n}x' = \{aix : ai \neq xi\}$$

$$T^{-n}(x) = \{W \cdot x : |w| = n, W_{iwi} \neq xi\}$$

$$B_{n}^{x_{0}} = \bigcup T^{-1}x$$

Backward pointwise ergodic theorem for T

Corollary (Tserunyan–Z. 2020+)

More general backward pointwise ergodic theorem for T

Theorem (Tserunyan–Z. 2020+)

A countable-to-one pmp transformation $T : X \to X$ is ergodic if and only if for each $f \in L^1(X, \mu)$ and for a.e. $x \in X$,

$$(\mathfrak{w}_{\mathsf{x}}\text{-weighted average of }f \text{ over } \mathbf{S}_{\mathsf{x}}) \to \int_{\mathsf{X}} f d\mu \text{ as } \mathfrak{w}_{\mathsf{x}}(\mathbf{S}_{\mathsf{x}}) \to \infty,$$

where S_x ranges over subtrees of the graph of T of finite height rooted at x and directed towards x.

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ の へ つ

A pointwise ergodic theorem for free groups...

along balls with Markov weights

Theorem (Bufetov 2000)

Let \mathfrak{m} be a strictly irreducible stationary Markov measure on $S^{<\mathbb{N}}$, where S is the standard symmetric generating set of \mathbb{F}_r , $r < \infty$.

A pmp action $\mathbb{F}_r \curvearrowright (X, \mu)$ is ergodic iff for any $f \in L^1(X, \mu)$, for a.e. $x \in X$,

$$\mathfrak{m}$$
-weighted average of f over $B_n \cdot \mathsf{x} \to \int_X f \ d\mu$ as $n \to \infty$,

where B_n is the (closed) ball of radius n of the Cayley graph of \mathbb{F}_r .

▲□▶ ▲舂▶ ▲差▶ ▲差▶ … 差

A pointwise ergodic theorem for free groups...

along trees with Markov weights

Theorem (Tserunyan–Z. 2020+)

Let \mathfrak{m} be a stationary Markov measure on \mathbb{F}_r , $r < \infty$, such that the measure of each $w \in \mathbb{F}_r$ is positive.

A pmp action $\mathbb{F}_r \curvearrowright (X, \mu)$ is ergodic iff for any $f \in L^1(X, \mu)$, for a.e. $x \in X$,

m-weighted average of f over
$$\mathbf{S} \cdot \mathbf{x} \to \int_{\mathbf{X}} f \ d\mu$$
 as $\mathfrak{m}(\mathbf{S}) \to \infty$,

where S ranges over finite subtrees of the Cayley graph of \mathbb{F}_r rooted at the identity.

From the free group action to a transformation

$$\langle S \rangle = \mathbb{F}_r \curvearrowright (X, \mu)$$
 finite, symmetric

$$T - n(x,y) = \{(w \cdot x, w \cdot y) : |w| = n \}$$

Part 3: forward pointwise ergodic theorem for a semigroup action

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Generalizing the backward theorem

continu

(\mathfrak{w}_x -weighted average of f over S_x) $\rightarrow \int_X f d\mu$ as $\mathfrak{w}_x(S_x) \rightarrow \infty$, **Borel** (partial) right inversion T, where S_x ranges over subtrees of the graph of T of finite height rooted at x and directed towards x. The second function T is a single transformation T, where S_x ranges over subtrees of the graph of T of finite height rooted at x and directed towards x. The second function T is a single transformation T, where S_x ranges over by $T = \sum_{x \to x} \sum_{$

ranges over subtrees of the graph of Γ of finite height rooted at x and directed away from x.

▲□> ▲圖> ▲国> ▲国>

Forward pointwise ergodic theorem

Theorem (Tserunyan–Z. 2022+)

If Γ and \mathfrak{w} are as below, and E_{Γ} is ergodic, then for each $f \in L^1(X, \mu)$ and for a.e. $x \in X$,

 $(\mathfrak{w}_x$ -weighted average of f over S_x) $\rightarrow \int_X f d\mu$ as $\mathfrak{w}_x(S_x) \rightarrow \infty$,

where S_x ranges over subtrees of the graph of T of finite height rooted at x and directed away from x.

Forward pointwise ergodic theorem

Theorem (Tserunyan–Z. 2022+)

If Γ and \mathfrak{w} are as below, and E_{Γ} is ergodic, then for each $f \in L^1(X, \mu)$ and for a.e. $x \in X$,

 $(\mathfrak{w}_{\mathsf{x}}\text{-weighted average of } f \text{ over } \mathbf{S}_{\mathsf{x}}) \to \int_{\mathsf{X}} f d\mu \text{ as } \mathfrak{w}_{\mathsf{x}}(\mathbf{S}_{\mathsf{x}}) \to \infty,$

where S_x ranges over subtrees of the graph of T of finite height rooted at x and directed away from x.

Let $(w, x) \mapsto \mathfrak{w}_x(wx)$ be the relative weights map induced by $\mathfrak{w}_x(\gamma x) := \frac{d\mu|_{\gamma \cdot X}}{d\gamma_x^{\star}\mu}(\gamma x).$ Let $\Gamma = \{\gamma_i : i < N \leq \omega\}$ be a countable set of Borel partial transformations $\gamma_i : X \to X$. Assume that

(日) (四) (문) (문) (문)

- for each $n \in \mathbb{N}$, $X = \bigsqcup_{w \in \Gamma^n} w \cdot X$,
- for μ -a.e. $x \in X$, $\sum_{\gamma \in \Gamma} \mathfrak{w}_x(\gamma x) = 1$, and
- the equivalence relation E_{Γ} is null preserving.

Theorem (Tserunyan–Z. 2022+)

Let $\Delta = \langle \Gamma \rangle$ be a free semigroup, where $\Gamma = \{\gamma_i : i < N < \infty\}$, and let $\Delta \frown X$ be a (not necessarily free) pmp ergodic semigroup action. Let \mathfrak{m} be a stationary Markov measure on $\Gamma^{<\mathbb{N}}$ with positive transition matrix such that the concatenation action $\Delta \frown \Gamma^{\mathbb{N}}$ is weakly mixing. Then for any $f \in L^1(X, \mu)$, for μ -a.e. $x \in X$, we have

$$\mathfrak{m}$$
-weighted average of f over $S \cdot \mathsf{x} o \int_X f \ d\mu$ as $\mathfrak{m}(S) o \infty$,

where S ranges over finite subtrees of the Cayley graph of Δ rooted at the identity.

Thank you!

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで